Transforming Grammars Lecture 17 Section 6.1

Robb T. Koether

Hampden-Sydney College

Mon, Oct 3, 2016

Robb T. Koether (Hampden-Sydney College)

Transforming Grammars

Mon, Oct 3, 2016 1 / 28

э

< ロト < 同ト < ヨト < ヨト

The Membership Problem for CFGs

Chomsky Normal Form

3 The Algorithm (Part 1)

- Eliminate all λ-Productions
- Eliminate all unit productions
- Eliminate all useless productions

Assignment

The Membership Problem for CFGs

- 2 Chomsky Normal Form
- 3 The Algorithm (Part 1)
 - Eliminate all λ-Productions
 - Eliminate all unit productions
 - Eliminate all useless productions

Assignment

4 A b

∃ ⊳

Definition

The Membership Problem for CFGs Given a context-free grammar *G* and a string *w*, is $w \in L(G)$? That is, can *w* be derived from *G*?

4 ∃ > < ∃ >

The Membership Problem for CFGs

Example (Membership Problem for CFGs)

Consider the grammar

 $S \rightarrow SAS \mid bAa$ $A \rightarrow aS \mid Sb \mid ab \mid S \mid \lambda$

3

イロト イポト イヨト イヨト

The Membership Problem for CFGs

Example (Membership Problem for CFGs)

Consider the grammar

 $S
ightarrow SAS \mid bAa$ $A
ightarrow aS \mid Sb \mid ab \mid S \mid \lambda$

• Is **babbba** $\in L(G)$?

3

イロト イポト イヨト イヨト

Example (Membership Problem for CFGs)

Consider the grammar

 $S
ightarrow SAS \mid bAa$ $A
ightarrow \mathbf{a}S \mid S\mathbf{b} \mid \mathbf{ab} \mid S \mid \lambda$

• Is **babbba** $\in L(G)$?

• If it is, then we can prove that by deriving it.

∃ ► < ∃ ►</p>

4 A 1

Example (Membership Problem for CFGs)

Consider the grammar

 $S
ightarrow SAS \mid bAa$ $A
ightarrow \mathbf{a}S \mid S\mathbf{b} \mid \mathbf{ab} \mid S \mid \lambda$

- Is **babbba** $\in L(G)$?
- If it is, then we can prove that by deriving it.
- But if it isn't, then how do we prove that?

∃ ► < ∃ ►</p>

4 A 1

The Membership Problem for CFGs

Chomsky Normal Form

3 The Algorithm (Part 1)

- Eliminate all λ-Productions
- Eliminate all unit productions
- Eliminate all useless productions

Assignment

4 A b

∃ ⊳

Definition (Chomsky Normal Form)

A grammar *G* is in Chomsky Normal Form, abbreviated CNF, if each rule is of the form

- $A \rightarrow BC$, or
- *A* → *a*,

where *B* and *C* are nonterminals and *a* is a terminal. Furthermore, if $\lambda \in L(G)$, then add the rule $S' \to S \mid \lambda$.

∃ ► < ∃ ►</p>

- What is the benefit of having a grammar in Chomsky Normal Form?
- CNF allows us to solve the membership problem for CFGs.

∃ ► < ∃ ►</p>

э

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト 二日

The Membership Problem for CFGs

2) Chomsky Normal Form

The Algorithm (Part 1)

- Eliminate all λ-Productions
- Eliminate all unit productions
- Eliminate all useless productions

Assignment

Theorem (Chomsky Normal Form)

Every context-free language is generated by a grammar in Chomsky Normal Form.

Proof.

Proof by algorithm.

Robb T. Koether (Hampden-Sydney College)

∃ ► < ∃ ►</p>

Outline of proof.

Begin with a grammar for the context-free language.

- Eliminate all λ -productions $A \rightarrow \lambda$.
- Eliminate all unit productions $A \rightarrow B$.
- Eliminate all useless productions, e.g., $A \rightarrow AB$ only.
- Eliminate all mixed productions.
- Eliminate all long productions.

The Membership Problem for CFGs

2) Chomsky Normal Form

3

The Algorithm (Part 1)

- Eliminate all λ-Productions
- Eliminate all unit productions
- Eliminate all useless productions

Assignment

Definition

A variable *A* is nullable if it derives λ . That is, if $A \stackrel{*}{\Rightarrow} \lambda$.

Robb T. Koether (Hampden-Sydney College)

3

Sac

イロト イロト イヨト イヨト

- To determine all nullable variables,
 - Let $N = \emptyset$.
 - Add to *N* all variables *A* for which there is a production $A \rightarrow \lambda$.
 - Repeatedly add to N all variables A for which there is a production

$$A \rightarrow B_1 B_2 \cdots B_k$$

where all $B_i \in N$ until no more such variables can be added.

• N is the set of nullable variables.

イヨト イヨト

Proof (Eliminate all λ -productions).

- For each nullable variable *A* and for each production $B \rightarrow uAv$ (with *A* on the right), add the production $B \rightarrow uv$.
- Eliminate all λ -productions.
- (If S is nullable, then add a new start symbol S' and the rule $S' \to S \mid \lambda$.)

Example (Eliminate all λ -productions)

• Eliminate all λ -productions from the following grammar.

 $S \rightarrow \mathbf{aSb} \mid SA \mid \mathbf{bB}$ $A \rightarrow \mathbf{aA} \mid SB \mid \lambda$ $B \rightarrow ABA \mid \lambda$

Robb T. Koether (Hampden-Sydney College)

э

イロト イポト イヨト イヨト

The Membership Problem for CFGs

2) Chomsky Normal Form

The Algorithm (Part 1)

Eliminate all λ-Productions

• Eliminate all unit productions

Eliminate all useless productions

Assignment

Proof (Eliminate all unit productions).

- If $A \rightarrow B$ and $B \rightarrow u$ are productions, then add the production $A \rightarrow u$.
- Eliminate the production $A \rightarrow B$.

- A complication occurs if, for variables A and B, we have A ⇒ B and B ⇒ A.
- To address this,
 - Let P' be the set of all non-unit productions in G.
 - Draw a dependency graph using only unit productions.
 - For every *A* and *B* for which $A \stackrel{*}{\Rightarrow} B$ in *G*, and for every production $B \rightarrow w$ in *P*', add the production $A \rightarrow w$ to *P*'.

Example (Eliminate all unit productions)

• Eliminate all unit productions from the following grammar.

$$S
ightarrow AB \mid CB \mid \mathbf{a}A$$

 $A
ightarrow B \mid \mathbf{a}\mathbf{b}$
 $B
ightarrow C \mid A\mathbf{b}$
 $C
ightarrow A \mid \mathbf{a}$

Robb T. Koether (Hampden-Sydney College)

→ Ξ → < Ξ</p>

I > <
 I >
 I

The Membership Problem for CFGs

2) Chomsky Normal Form

The Algorithm (Part 1)

- Eliminate all λ-Productions
- Eliminate all unit productions
- Eliminate all useless productions

Assignment

Definition (Useful Variable)

A variable A is useful if there is at least one derivation

$$S \stackrel{*}{\Rightarrow} uAv \stackrel{*}{\Rightarrow} w$$

with $u, v \in (V \cup T)^*$ and $w \in T^*$.

Definition (Useless Variable)

A variable is useless if it is not useful.

Definition (Useless Production)

A production $A \rightarrow u$ is useless if u contains a useless variable.

★ E ► ★ E ► E

I > <
 I >
 I

- To determine which variables are useless,
 - Set $V' = \emptyset$.
 - Add to V' all variables A for which there is a production $A \rightarrow x_1 x_2 \cdots x_k$ with all $x_i \in V' \cup T$.
 - Repeat the previous step until no more symbols are added to V'.
 - For each A ∈ V', use a dependency graph to determine whether there is a derivation S ⇒ uAv for some u, v ∈ (V ∪ T)*.
 - If A ∉ V' or if A ∈ V', but there is no derivation S ⇒ uAv, then A is useless.

500

A B F A B F

Example (Eliminate all Useless Productions)

• Eliminate all useless productions from the following grammar.

 $S \rightarrow AS \mid BB \mid SC \mid C \mid SDa$ $A \rightarrow ABD \mid a$ $B \rightarrow AD \mid bD$ $C \rightarrow BD \mid Ca \mid Sb \mid b$ $D \rightarrow aB \mid Db \mid AD$

イロト イポト イヨト イヨト 二日

Example (Eliminate all Useless Productions)

• Eliminate all λ -productions, unit productions, and useless productions from the following grammar.

 $S \rightarrow SAS \mid bAa$ $A \rightarrow aS \mid Sb \mid ab \mid S \mid \lambda$

Robb T. Koether (Hampden-Sydney College)

E > < E >

The Membership Problem for CFGs

2 Chomsky Normal Form

3 The Algorithm (Part 1)

- Eliminate all λ-Productions
- Eliminate all unit productions
- Eliminate all useless productions

Assignment

-

< A.

Assignment

• Section 6.1 Exercises 6, 7, 8, 9, 10, 11, 17, 23, 24, 25, 26.

Robb T. Koether (Hampden-Sydney College)

Transforming Grammars

Mon. Oct 3, 2016 28 / 28

э

< ロト < 同ト < ヨト < ヨト